FREQUÊNCIAS ALÉLICAS EM IFI16 E AIM2 DE UMA POPULAÇÃO BRASILEIRA MISCIGENADA E NAS POPULAÇÕES AFRICANA E EUROPEIA
DOI:
https://doi.org/10.25194/rebrasf.v11i2.1656Keywords:
Populações de Ascendência Africana, Grupo de Ancestralidade no Continente Europeu, Alelos, IFI16, AIM2Abstract
Introduction: The population of Salvador/Bahia is among the first formed in colonial Brazil and was influenced by different peoples. This study analyzed the allele frequency of variants in the genes Interferon Gamma Inducible Protein 16 (IFI16) and Absent in Melanoma 2 (AIM2) in a population from Salvador/Bahia/Brazil with reference populations, verified their regulatory potential, and described associated diseases in different populations. Method: Cross-sectional, structured cohort study on asthma and periodontitis (n=1094). Information was extracted from the Illumina Multi-Ethinic AMR/AFR-8 chip. Comparison of the frequency of the polymorphic allele of the genetic variants of IFI16 and AIM2 was carried out between individuals from Salvador and African and European populations. Results: The allele frequencies of genetic variants in IFI16 in the studied population were more similar to those of Europeans. Of the 50 IFI16 variants, 08 had a polymorphic allele frequency greater than 40% and 07 between 20% and 39% and of the 26 in AIM2, 01 had a frequency greater than 40% and 04 between 20 and 39%. The most significant regulatory potential verified in IFI16 occurred in 5 variants with classification 3a. In AIM2, 2 presented classification 2b and 3a. Conclusion: Comparison analysis of the frequency of alleles of genetic variants in IFI16 suggests a greater genetic influence of European than African ancestral peoples. In AIM2 the results did not agree. Analyzes of the association of polymorphic alleles with the pathologies described in the literature and validation of the results found in this study in other populations of the same studied region are suggested.
References
- Loos BG, Van Dyke TE. The role of inflammation and genetics in periodontal disease. Periodontol 2000. 2020 Jun;83(1):26-39. doi: 10.1111/prd.12297. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7319430/. Acesso em: 10 mar 2021.
- Morelli, T, Agler, CS, Divaris, K. Genomics of periodontal disease and tooth morbidity. Periodontol 2000. 2020; 82: 143– 156. doi: 10.1111/prd.12320. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972532/. Acesso em 10 mar 2021.
- Royal CD, Novembre J, Fullerton SM, Goldstein DB, Long JC, Bamshad MJ, Clark AG. Inferring genetic ancestry: opportunities, challenges, and implications. Am J Hum Genet. 2010 May 14;86(5):661-73. doi: 10.1016/j.ajhg.2010.03.011. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2869013/. Acesso em: 14 jun 2020.
- Mathieson I, Scally A. What is ancestry? PLoS Genet. 2020; 16(3): e1008624. doi: 10.1371/journal.pgen.1008624. Disponível em: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1008624. Acesso em: 06 jul 2021.
- Zhernakova A, Stahl E, Trynka G, Raychaudhuri S, Festen E, Franke L et al. Meta-Analysis of Genome-Wide Association Studies in Celiac Disease and Rheumatoid Arthritis Identifies Fourteen Non-HLA Shared Loci. PLoS Genetics. 2011;7(2):e1002004. doi: 10.1371/journal.pgen.1002004. Disponível em: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1002004. Acesso em:
jun 2020.
- Ortiz-Fernández L, García-Lozano J, Montes-Cano M, Conde-Jaldón M, Ortego-Centeno N, García-Hernández F et al. Variants of the IFI16 Gene Affecting the Levels of Expression of mRNA Are Associated with Susceptibility to Behçet Disease. The Journal of Rheumatology. 2015;42(4):695-701. doi: 10.3899/jrheum.140949. Disponível em: https://www.jrheum.org/content/42/4/695. Acesso em: 06 jul 2020.
–Eriksson K, Svensson A, Hait A, Schlüter K, Tunbäck P, Nordström I et al. Cutting Edge: Genetic Association between IFI16 Single Nucleotide Polymorphisms and Resistance to Genital Herpes Correlates with IFI16 Expression Levels and HSV-2–Induced IFN-β Expression. The Journal of Immunology. 2017;199(8):2613-2617. doi: 10.4049/jimmunol.1700385. Disponível em: https://journals.aai.org/jimmunol/article/199/8/2613/106445/Cutting-Edge-Genetic-Association-between-IFI16. Acesso em: 15 jul 2020.
- Liu C, Lin C, Hu H, Liu H, Chiu Y, Lee S et al. The association of inflammasome and TLR2 gene polymorphisms with susceptibility to tuberculosis in the Han Taiwanese population. Scientific Reports. 2020;10(1). doi: 10.1038/s41598-020-67299-6. Disponível em: https://www.nature.com/articles/s41598-020-67299-6. Acesso em: 15 abr 2021.
- Marchesan J, Jiao Y, Moss K, Divaris K, Seaman W, Webster-Cyriaque J et al. Common Polymorphisms in IFI16 and AIM2 Genes Are Associated With Periodontal Disease. Journal of Periodontology. 2017;88(7):663-672. doi: 10.1902/jop.2017.160553. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695043/. Acesso em: 07 mai 2019.
- Lara‐Reyna S, Caseley E, Topping J, Rodrigues F, Jimenez Macias J, Lawler S et al. Inflammasome activation: from molecular mechanisms to autoinflammation. Clinical & Translational Immunology. 2022;11(7). doi: 10.1002/cti2.1404. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9262628/. Acesso em: 18 jan 2023.
Wang L, Sun L, Byrd K, Ko C, Zhao Z, Fang J. AIM2 Inflammasome's First Decade of Discovery: Focus on Oral Diseases. Frontiers in Immunology. 2020;11. doi: 10.3389/fimmu.2020.01487. Disponível em: https://www.frontiersin.org/articles/10.3389/fimmu.2020.01487/full. Acesso em: 10 mar 2021.
- Marchesan J, Girnary M, Moss K, Monaghan E, Egnatz G, Jiao Y et al. Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics. Periodontology 2000. 2019;82(1):93-114. doi: 10.1111/prd.12269. Disponível em: https://onlinelibrary.wiley.com/doi/10.1111/prd.12269. Acesso em: 15 jul 2020.
- Veeranki S, Duan X, Panchanathan R, Liu H, Choubey D. IFI16 protein mediates the anti-inflammatory actions of the type-I interferons through suppression of activation of caspase-1 by inflammasomes. PLoS One. 2011;6(10):e27040. doi: 10.1371/journal.pone.0027040. Disponível em: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0027040. Acesso em: 07 mai 2019.
- Ng S, Turner E, Robertson P, Flygare S, Bigham A, Lee C et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature. 2009;461(7261):272-276. doi: 10.1038/nature08250. Disponível em: https://www.nature.com/articles/nature08250#citeas. Acesso em: 06 mai 2019.
- Agarwala R, Barrett T, Beck J, Benson D, Bollin C, Bolton E et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Research. 2017;46(D1):D8-D13. doi: 10.1093/nar/gkac1032. Disponível em: https://academic.oup.com/nar/article/51/D1/D29/6825348. Acesso em: 06 jul 2020.
- Ward L, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Research. 2011;40(D1):D930-D934. doi: 10.1093/nar/gkr917. Disponível em: https://academic.oup.com/nar/article/40/D1/D930/2903522. Acesso em: 06 jul 2020.
- Auton A, Abecasis G, Altshuler D, Durbin R, Abecasis G, Bentley D et al. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526(7571):68-74. doi: 10.1038/nature15393. Disponível em: https://www.nature.com/articles/nature15393. Acesso em: 21 set 2020.
- Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, von Mering C. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 Jan; 47:D607-613. doi: 10.1093/nar/gky1131. Disponível em: https://academic.oup.com/nar/article/47/D1/D607/5198476. Acesso em: 21 set 2020.
- Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S, Cherry JM, Snyder M. Annotation of functional variation in personal genomes using RegulomeDB. Genome Research 2012, 22(9):1790-1797. doi: 10.1093/nar/gky1131. Disponível em: https://academic.oup.com/nar/article/47/D1/D607/5198476. Acesso em: 08 ago 2020.
- Howe K, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode M et al. Ensembl 2021. Nucleic Acids Research. 2020;49(D1):D884-D891. doi: 10.1093/nar/gkaa942. Disponível em: https://academic.oup.com/nar/article/49/D1/D884/5952199. Acesso em 10 mar 2021.
- Bateman A, Martin M, Orchard S, Magrane M, Agivetova R, Ahmad S et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Research. 2020;49(D1):D480-D489. doi: 10.1093/nar/gkaa1100. Disponível em: https://academic.oup.com/nar/article/49/D1/D480/6006196. Acesso em 10 mar 2021.
- Barrett J, Fry B, Maller J, Daly M. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21(2):263–5. doi: 10.1093/bioinformatics/bth457. Disponível em: https://academic.oup.com/bioinformatics/article/21/2/263/186662. Acesso em 08 ago 2020.
- Neale B. Introduction to Linkage Disequilibrium, the HapMap, and Imputation. Cold Spring Harbor Protocols. Cold Spring Harb Protoc. 2010;2010(3):1–4. doi:10.1101/pdb.top74. Disponível em: https://cshprotocols.cshlp.org/content/2010/3/pdb.top74.long. Acesso em 08 ago 2020.
- Abe-Sandes, Kiyoko et al. Ancestralidade Genômica, nível socioeconômico e vulnerabilidade ao HIV/aids na Bahia, Brasil. Saúde e Sociedade [online]. 2010, v. 19, suppl 2, pp. 75-84. doi:10.1590/S0104-12902010000600008. Disponível em: https://www.scielo.br/j/sausoc/a/pDTzDLLPHNWLBFHL3QLpfsL/. Acesso em: 10 mar 2021.
- Mu W, Zhang W. Molecular Approaches, Models, and Techniques in Pharmacogenomic Research and Development. Pharmacogenomics. 2013;273–94. doi: 10.1016/B978-0-12-391918-2.00008-1. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/B9780123919182000081. Acesso em: 02 dez 2020.
- Almeida YCF, Dourado, KMC, Figueiredo CA. Descrição da frequência de variantes genéticas no gene da endoglina em uma população do Nordeste do Brasil. Rev Cienc Med Biol. 2018; 17(3):392-7. doi: 10.9771/cmbio.v17i3.28629. Disponível em: https://docs.bvsalud.org/biblioref/2021/06/1248140/28629-118524-1-pb.pdf. Acesso em: 25 out 2019.
- Kehdy FS, Gouveia MH, Machado M, Magalhães WC, Horimoto AR, Horta BL et al. Brazilian EPIGEN Project Consortium. Origin and dynamics of admixture in Brazilians and its effect on the pattern of deleterious mutations. Proc Natl Acad Sci USA. 2015;112(28):8696-701. doi: 10.1073/pnas.1504447112. Disponível em: https://www.pnas.org/doi/10.1073/pnas.1504447112. Acesso em: 25 out 2019.
- Abdelhadi O, Iancu D, Tekman M, Stanescu H, Bockenhauer D, Kleta R. Founder mutation in KCNJ10 em pacientes paquistaneses com síndrome de EAST. Mol Genet Genomic Med. 2016 Jun 7;4(5):521-6. doi: 10.1002/mgg3.227. Disponível em: https://onlinelibrary.wiley.com/doi/10.1002/mgg3.227. Acesso em: 29 set 2020.
- Offenbacher S, Divaris K, Barros S, Moss K, Marchesan J, Morelli T et al. Genome-wide association study of biologically informed periodontal complex traits offers novel insights into the genetic basis of periodontal disease. Human Molecular Genetics. 2016;25(10):2113-2129. doi: 10.1093/hmg/ddw069. Disponível em: https://academic.oup.com/hmg/article/25/10/2113/2236518. Acesso em: 12 abr 2019.
- Schaefer B, Flanagan J, Alvarez O, Nelson S, Aygun B, Nottage K et al. Genetic Modifiers of White Blood Cell Count, Albuminuria and Glomerular Filtration Rate in Children with Sickle Cell Anemia. PLOS ONE. 2016;11(10):e0164364. doi: 10.1371/journal.pone.0164364. Disponível em: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0164364. Acesso em: 11 abr 2021.